ブログはじめました。日本語だと不便です。機能も少ないです。 なのでそのうち他のサービスを探します。ここはとりあえず実験的に。

日曜日, 1月 21, 2024

Hacktivity 2018 Badge - Quick Start Guide For Beginners

You either landed on this blog post because 
  • you are a huge fan of Hacktivity
  • you bought this badge around a year ago
  • you are just interested in hacker conference badge hacking. 
or maybe all of the above. Whatever the reasons, this guide should be helpful for those who never had any real-life experience with these little gadgets. 
But first things first, here is a list what you need for hacking the badge:
  • a computer with USB port and macOS, Linux or Windows. You can use other OS as well, but this guide covers these
  • USB mini cable to connect the badge to the computer
  • the Hacktivity badge from 2018
By default, this is how your badge looks like.


Let's get started

Luckily, you don't need any soldering skills for the first steps. Just connect the USB mini port to the bottom left connector on the badge, connect the other part of the USB cable to your computer, and within some seconds you will be able to see that the lights on your badge are blinking. So far so good. 

Now, depending on which OS you use, you should choose your destiny here.

Linux

The best source of information about a new device being connected is
# dmesg

The tail of the output should look like
[267300.206966] usb 2-2.2: new full-speed USB device number 14 using uhci_hcd [267300.326484] usb 2-2.2: New USB device found, idVendor=0403, idProduct=6001 [267300.326486] usb 2-2.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [267300.326487] usb 2-2.2: Product: FT232R USB UART [267300.326488] usb 2-2.2: Manufacturer: FTDI [267300.326489] usb 2-2.2: SerialNumber: AC01U4XN [267300.558684] usbcore: registered new interface driver usbserial_generic [267300.558692] usbserial: USB Serial support registered for generic [267300.639673] usbcore: registered new interface driver ftdi_sio [267300.639684] usbserial: USB Serial support registered for FTDI USB Serial Device [267300.639713] ftdi_sio 2-2.2:1.0: FTDI USB Serial Device converter detected [267300.639741] usb 2-2.2: Detected FT232RL [267300.643235] usb 2-2.2: FTDI USB Serial Device converter now attached to ttyUSB0 

Dmesg is pretty kind to us, as it even notifies us that the device is now attached to ttyUSB0. 

From now on, connecting to the device is exactly the same as it is in the macOS section, so please find the "Linux users, read it from here" section below. 

macOS

There are multiple commands you can type into Terminal to get an idea about what you are looking at. One command is:
# ioreg -p IOUSB -w0 -l

With this command, you should get output similar to this:

+-o FT232R USB UART@14100000  <class AppleUSBDevice, id 0x100005465, registered, matched, active, busy 0 (712 ms), retain 20>     |   {     |     "sessionID" = 71217335583342     |     "iManufacturer" = 1     |     "bNumConfigurations" = 1     |     "idProduct" = 24577     |     "bcdDevice" = 1536     |     "Bus Power Available" = 250     |     "USB Address" = 2     |     "bMaxPacketSize0" = 8     |     "iProduct" = 2     |     "iSerialNumber" = 3     |     "bDeviceClass" = 0     |     "Built-In" = No     |     "locationID" = 336592896     |     "bDeviceSubClass" = 0     |     "bcdUSB" = 512     |     "USB Product Name" = "FT232R USB UART"     |     "PortNum" = 1     |     "non-removable" = "no"     |     "IOCFPlugInTypes" = {"9dc7b780-9ec0-11d4-a54f-000a27052861"="IOUSBFamily.kext/Contents/PlugIns/IOUSBLib.bundle"}     |     "bDeviceProtocol" = 0     |     "IOUserClientClass" = "IOUSBDeviceUserClientV2"     |     "IOPowerManagement" = {"DevicePowerState"=0,"CurrentPowerState"=3,"CapabilityFlags"=65536,"MaxPowerState"=4,"DriverPowerState"=3}     |     "kUSBCurrentConfiguration" = 1     |     "Device Speed" = 1     |     "USB Vendor Name" = "FTDI"     |     "idVendor" = 1027     |     "IOGeneralInterest" = "IOCommand is not serializable"     |     "USB Serial Number" = "AC01U4XN"     |     "IOClassNameOverride" = "IOUSBDevice"     |   }  
The most important information you get is the USB serial number - AC01U4XN in my case.
Another way to get this information is
# system_profiler SPUSBDataType  
which will give back something similar to:
FT232R USB UART:            Product ID: 0x6001           Vendor ID: 0x0403  (Future Technology Devices International Limited)           Version: 6.00           Serial Number: AC01U4XN           Speed: Up to 12 Mb/sec           Manufacturer: FTDI           Location ID: 0x14100000 / 2           Current Available (mA): 500           Current Required (mA): 90           Extra Operating Current (mA): 0 

The serial number you got is the same.

What you are trying to achieve here is to connect to the device, but in order to connect to it, you have to know where the device in the /dev folder is mapped to. A quick and dirty solution is to list all devices under /dev when the device is disconnected, once when it is connected, and diff the outputs. For example, the following should do the job:

ls -lha /dev/tty* > plugged.txt ls -lha /dev/tty* > np.txt vimdiff plugged.txt np.txt 

The result should be obvious, /dev/tty.usbserial-AC01U4XN is the new device in case macOS. In the case of Linux, it was /dev/ttyUSB0.

Linux users, read it from here. macOS users, please continue reading

Now you can use either the built-in screen command or minicom to get data out from the badge. Usually, you need three information in order to communicate with a badge. Path on /dev (you already got that), speed in baud, and the async config parameters. Either you can guess the speed or you can Google that for the specific device. Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000 and 256000 bits per second. I usually found 1200, 9600 and 115200 a common choice, but that is just me.
Regarding the async config parameters, the default is that 8 bits are used, there is no parity bit, and 1 stop bit is used. The short abbreviation for this is 8n1. In the next example, you will use the screen command. By default, it uses 8n1, but it is called cs8 to confuse the beginners.

If you type:
# screen /dev/tty.usbserial-AC01U4XN 9600
or
# screen /dev/ttyUSB0 9600
and wait for minutes and nothing happens, it is because the badge already tried to communicate via the USB port, but no-one was listening there. Disconnect the badge from the computer, connect again, and type the screen command above to connect. If you are quick enough you can see that the amber LED will stop blinking and your screen command is greeted with some interesting information. By quick enough I mean ˜90 seconds, as it takes the device 1.5 minutes to boot the OS and the CTF app.

Windows

When you connect the device to Windows, you will be greeted with a pop-up.

Just click on the popup and you will see the COM port number the device is connected to:


In this case, it is connected to COM3. So let's fire up our favorite putty.exe, select Serial, choose COM3, add speed 9600, and you are ready to go!


You might check the end of the macOS section in case you can't see anything. Timing is everything.

The CTF

Welcome to the Hacktivity 2018 badge challenge!  This challenge consists of several tasks with one or more levels of difficulty. They are all connected in some way or another to HW RE and there's no competition, the whole purpose is to learn things.  Note: we recommend turning on local echo in your terminal! Also, feel free to ask for hints at the Hackcenter!  Choose your destiny below:    1. Visual HW debugging   2. Reverse engineering   3. RF hacking   4. Crypto protection  Enter the number of the challenge you're interested in and press [ 
Excellent, now you are ready to hack this! In case you are lost in controlling the screen command, go to https://linuxize.com/post/how-to-use-linux-screen/.

I will not spoil any fun in giving out the challenge solutions here. It is still your task to find solutions for these.

But here is a catch. You can get a root shell on the device. And it is pretty straightforward. Just carefully remove the Omega shield from the badge. Now you see two jumpers; by default, these are connected together as UART1. As seen below.



But what happens if you move these jumpers to UART0? Guess what, you can get a root shell! This is what I call privilege escalation on the HW level :) But first, let's connect the Omega shield back. Also, for added fun, this new interface speaks on 115200 baud, so you should change your screen parameters to 115200. Also, the new interface has a different ID under /dev, but I am sure you can figure this out from now on.




If you connect to the device during boot time, you can see a lot of exciting debug information about the device. And after it boots, you just get a root prompt. Woohoo! 
But what can you do with this root access? Well, for starters, how about running 
# strings hello | less

From now on, you are on your own to hack this badge. Happy hacking.
Big thanks to Attila Marosi-Bauer and Hackerspace Budapest for developing this badge and the contests.

PS: In case you want to use the radio functionality of the badge, see below how you should solder the parts to it. By default, you can process slow speed radio frequency signals on GPIO19. But for higher transfer speeds, you should wire the RF module DATA OUT pin with the RX1 free together.



Related articles


  1. Hack Tools Pc
  2. Pentest Tools Apk
  3. Hacking Tools Usb
  4. Hacker Tools 2019
  5. Game Hacking
  6. Top Pentest Tools
  7. Best Pentesting Tools 2018
  8. Free Pentest Tools For Windows
  9. Hacker Hardware Tools
  10. Hacker Tools For Pc
  11. Pentest Tools Github
  12. Black Hat Hacker Tools
  13. Top Pentest Tools
  14. Hacking Tools For Kali Linux
  15. Hacker Tools 2019
  16. Install Pentest Tools Ubuntu
  17. Hacking Tools Free Download
  18. Hacking App
  19. Nsa Hacker Tools
  20. Hack App
  21. Hack Tools Github
  22. Pentest Tools Apk
  23. Hacker Tools Software
  24. Growth Hacker Tools
  25. Hack App
  26. Hacker Tools Mac
  27. Hacking Tools For Kali Linux
  28. Hacker Tools For Pc
  29. Hacking Tools For Kali Linux
  30. Pentest Tools Port Scanner
  31. Hack And Tools
  32. Hacker Tools For Pc
  33. Hacker Tools Windows
  34. New Hacker Tools
  35. Hack Tools For Games
  36. Hacking App
  37. Hacker
  38. Hacking App
  39. Hacker Tools Free Download
  40. Underground Hacker Sites
  41. Tools Used For Hacking
  42. Hack And Tools
  43. Hacking Tools For Kali Linux
  44. Android Hack Tools Github
  45. Hacking Tools For Mac
  46. Hacker Search Tools
  47. Hacker Tools Free
  48. Hack App
  49. Hackers Toolbox
  50. Pentest Tools For Mac
  51. Hacking Tools For Pc
  52. Install Pentest Tools Ubuntu
  53. Pentest Tools For Android
  54. Hacking Tools For Windows
  55. Hacking Tools Mac
  56. Hacker Tools Github
  57. Hacker
  58. Beginner Hacker Tools
  59. Pentest Reporting Tools
  60. Pentest Tools Find Subdomains
  61. Hacking Tools For Windows 7
  62. Hacking Apps
  63. Hacker Tools Mac
  64. Tools For Hacker
  65. Hacker Search Tools
  66. Ethical Hacker Tools
  67. Pentest Tools Find Subdomains
  68. Top Pentest Tools
  69. Pentest Tools List
  70. Hacker Tool Kit
  71. Pentest Tools Framework
  72. Hack Tools Mac
  73. How To Make Hacking Tools
  74. Pentest Tools Nmap
  75. Wifi Hacker Tools For Windows
  76. Pentest Tools Android
  77. Bluetooth Hacking Tools Kali
  78. Tools For Hacker
  79. Pentest Tools Review
  80. Nsa Hack Tools Download
  81. Pentest Tools Kali Linux
  82. Hacking Tools Windows 10
  83. Hack Tools For Ubuntu
  84. Beginner Hacker Tools
  85. Usb Pentest Tools
  86. Hack Tools For Mac
  87. Hack Tools Online
  88. Pentest Box Tools Download
  89. Pentest Tools Free
  90. Hack Tools
  91. Hack Tool Apk
  92. Hacker Tools For Windows
  93. Usb Pentest Tools
  94. Hacker Tools Apk